2.已知,如图,在直角梯形COAB中,CB‖OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t
问题描述:
2.已知,如图,在直角梯形COAB中,CB‖OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒,
(1)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,指出自变量的取值范围,并求出S的最大值
(2)动点P从出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标
这里有图!
明天要交的!
答
(1)S=2t[1,14]
S=55-2.5t[14,22]
S最大为20
(2)7秒和16.4秒此时P为(4.2,5.6)和(0,5.6)