已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.
问题描述:
已知函数f(x)=loga(a-ax)且a>1,
(1)求函数的定义域和值域;
(2)讨论f(x)在其定义域上的单调性;
(3)证明函数图象关于y=x对称.
答
解析:(1)a-ax>0
又∵a>1,
∴x<1
故其定义域为(-∞,1),值域为(-∞,+∞)
(2)设1>x2>x1
∵a>1,∴ax2>ax1,于是a-ax2<a-ax1
则loga(a-ax2)<loga(a-ax1)
即f(x2)<f(x1)
∴f(x)在定义域(-∞,1)上是减函数
(3)证明:令y=loga(a-ax)(x<1),则a-ax=ay,x=loga(a-ay)
∴f-1(x)=loga(a-ax)(x<1)
故f(x)的反函数是其自身,得函数f(x)=loga(a-ax)(x<1)图象关于y=x对称.