(1)1*2+2*3+3*4+...+100*101= (2)1*2+2*3+3*4+...+n(n+1)= (3)1*2*3+2*3*4+...+n(n+1)(n+2)=

问题描述:

(1)1*2+2*3+3*4+...+100*101= (2)1*2+2*3+3*4+...+n(n+1)= (3)1*2*3+2*3*4+...+n(n+1)(n+2)=

(1)1*2+2*3+3*4+.+100*101 =1/3*1*2*3+1/3[2*3*4-1*2*3]+1/3[3*4*5-2*3*4]+.+1/3[100*101*102-99*100*101] =1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+100*101*102-99*100*101] =1/3*100*101*102 =343400(2)1×2+2...