在数列{an}中,若a1=2,an+1=an+ln(1+1n),则an等于(  ) A.2+ln2 B.2+(n-1)lnn C.2+nlnn D.1+n

问题描述:

在数列{an}中,若a1=2,an+1=an+ln(1+

1
n
),则an等于(  )
A. 2+ln2
B. 2+(n-1)lnn
C. 2+nlnn
D. 1+n

∵an+1=an+ln(1+1n),∴an+1-an=ln(1+1n)=lnn+1n,an-an-1=lnnn−1=lnn-ln(n-1),an-1-an-2=lnn−1n−2=ln(n-1)-ln(n-2),…a3-a2=ln32=ln3-ln2a2-a1=ln2,累加得:an-a1=lnn-ln(n-1+ln(n-1)-ln(n-2)...