在数列{an}中,a1=2,an+1=an+ln(1+1n),则an=( ) A.2+lnn B.2+( n-1 ) lnn C.2+nlnn D.1+n+lnn
问题描述:
在数列{an}中,a1=2,an+1=an+ln(1+
),则an=( )1 n
A. 2+lnn
B. 2+( n-1 ) lnn
C. 2+nlnn
D. 1+n+lnn
答
∵在数列{an}中,a1=2,an+1=an+ln(1+
),∴an+1−an=ln1 n
.n+1 n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=ln
+lnn n−1
+…+lnn−1 n−2
+22 1
=ln(
•n n−1
•…•n−1 n−2
)+22 1
=lnn+2.
故选A.