在数列{an}中,a1=2,an+1=an+ln(1+1n),则an=(  ) A.2+lnn B.2+( n-1 ) lnn C.2+nlnn D.1+n+lnn

问题描述:

在数列{an}中,a1=2,an+1=an+ln(1+

1
n
),则an=(  )
A. 2+lnn
B. 2+( n-1 ) lnn
C. 2+nlnn
D. 1+n+lnn

∵在数列{an}中,a1=2,an+1=an+ln(1+

1
n
),∴an+1an=ln
n+1
n

∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=ln
n
n−1
+ln
n−1
n−2
+
…+ln
2
1
+2
=ln(
n
n−1
n−1
n−2
•…•
2
1
)+2

=lnn+2.
故选A.