1、化简算式求值:(要有具体步骤)

问题描述:

1、化简算式求值:(要有具体步骤)
(2+1)(2^2+1)(2^4+1)(2^8+901)(2^16+1)(2^32+1)
2、观察下列式子:
1^2+(1x2)^2+2^2=9=3^2
2^2+(2x3)^2+3^2=49=7^2
3^2+(3x4)^2+4^2=169=13^2
……
用含n的等式(n为正整数)表示出来,并说明其中的道理.

(2+1)(2^2+1)(2^4+1)(2^8+901)(2^16+1)(2^32+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+901)(2^16+1)(2^32+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+901)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+901)(2^16+1)(2^32+1)
=……………………………………
=2^64-1
n^2+(n(n+1))^2+(n+1)^2=(n(n+1)+1)^2
(道理嘛…………………………您把式子展开就知道了)