已知数列{an}满足an>0且对一切n属于正整数,都有a1^3+a2^3+...+an^3=sn^2,sn是{an}的前n项和.

问题描述:

已知数列{an}满足an>0且对一切n属于正整数,都有a1^3+a2^3+...+an^3=sn^2,sn是{an}的前n项和.
求证:a(n+1)^2-a(n+1)=2sn

a1^3+a2^3+...+an^3=sn^2a1^3+a2^3+...+[a(n+1)]^3=[s(n+1)]^2两式相减得[a(n+1)]^3=[s(n+1)]^2-sn^2[a(n+1)]^3=[s(n+1)-sn][s(n+1)+sn][a(n+1)]^3=a(n+1)[s(n+1)+sn][a(n+1)]^2=s(n+1)+sn[a(n+1)]^2=sn+a(n+1)+sn[a...