设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,那么在函数值f(-1)、f(0)、f(2)、f(5)中,最小的一个不可能是(  ) A.f(5) B.f(2) C.f(-1) D.f(1)

问题描述:

设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,那么在函数值f(-1)、f(0)、f(2)、f(5)中,最小的一个不可能是(  )
A. f(5)
B. f(2)
C. f(-1)
D. f(1)

∵函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,
∴二次函数f(x)的图象关于直线x=2对称,
显然,直线x=2离对称轴最近,直线x=-1离对称轴最远,
而直线x=1离对称轴既不最近、也不最远,
故函数值f(-1)、f(0)、f(2)、f(5)中,最小的一个不可能是f(1),
故选:D.