[1+cos.sin]/{cos+sin}的值域
问题描述:
[1+cos.sin]/{cos+sin}的值域
答
(1+cosxsinx)/(cosx+sinx)=[2(1+cosxsinx)]/[2(cosx+sinx)]
=[1+(1+2cosxsinx)]/[2(cosx+sinx)]
=[1+(cosx+sinx)^2]/[2(cosx+sinx)]
=1/2[(cosx+sinx)]+1/(cosx+sinx)]
≥1/2×2×[(cosx+sinx)]×1/(cosx+sinx)]=1
∴[1+cos.sin]/{cos+sin}的值域为[1,+∞)