x+y+z=1,且1/x+ 1/y 1/z=0,求x^+y^+z^

问题描述:

x+y+z=1,且1/x+ 1/y 1/z=0,求x^+y^+z^

x+y+z=1,且1/x+ 1/y +1/z=0,求x^+y^+z^
x+y+z=1,
平方得
x²+y²+z²+2xy+2xz+2yz=1

1/x+1/y+1/z=0
同乘以xyz,得
yz+xz+xy=0
所以
x²+y²+z²=1