求证:对于任意正整属n,均有1+1/2+1/3+······+1/n>lne/n

问题描述:

求证:对于任意正整属n,均有1+1/2+1/3+······+1/n>lne/n

当n=1时,左式=1,右式=1,左边等于右边亲是不是打漏了一个等号?是大于等于吧?当n=2时,左式=3/2,右式=lne/2=lne-ln21)时,1+1/2+1/3+······+1/k>lne/k则当n=k+1时,左式=1+1/2+1/3+······+1/k+1/(k+1)>lne/k...