高一几何求解-圆与直线方程

问题描述:

高一几何求解-圆与直线方程
直线x-2y-3=0与圆(x-2)^2+(y+3)^2=9交于E,F两点.则△EOF(O为坐标原点)的面积等于______.
另请附一个已知圆(x-a)^2+(y-b)^2=c^2与mx+ny=p的交点间的距离公式.
知道了

由点到直线的距离的公式可得:原点到直线EF得距离为h=3/√5
同样可得,圆心(2,-3)到直线x-2y-3=0的距离为
d=|2-2*(-3)-3|/√5=√5
弦EF的长度为2*√((3²-(√5)²)=4
则△EOF的面积为=1/2*弦EF的长度*原点到直线EF得距离
=1/2*4*3/√5
=6√5/5