lim(n趋向于无穷) (cosx/n+sinx/n)^n 的值为多少?
问题描述:
lim(n趋向于无穷) (cosx/n+sinx/n)^n 的值为多少?
答
∵lim(t->0)[(sint+cost-1)/t]=lim(t->0)(cost-sint) (0/0型极限,应用罗比达法则)
=1
∴ lim(n->∞){[cos(x/n)+sin(x/n)]^n}
=lim(t->0)[(cost+sint)^(x/t)] (令t=x/n)
=lim(t->0){[(1+(sint+cost-1)]^[(1/(sint+cost-1))*(x(sint+cost-1)/t)]}
=e^{x*lim(t->0)[(sint+cost-1)/t]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^(x*1)
=e^x.我算出来也是这个 但是我们老师说答案是1为什么额哈哈,那肯定是老师错了!我用几种方法求解都是这个结果。不要以为老师总是对的,他也会出错。