设f(x)=ax+b-lnx,在[1,3]上f(x)>=0,求常数a,b使∫1~3 f(x)dx最小

问题描述:

设f(x)=ax+b-lnx,在[1,3]上f(x)>=0,求常数a,b使∫1~3 f(x)dx最小

  f(x)=ax+b-lnx,  依题意f(1)=a+b>=0,  f(3)=3a+b-ln3>=0,  g(a,b)=∫f(x)dx=[(1/2)ax^+bx-xlnx+x]|  =4a+2b-3ln3+3,  当a+b=0,3a+b=ln3,即a=(1/2)ln3,b=(-1/2)ln3时  g(a,b)取最小值3-2ln3....