设f(x)=ax+b-lnx,在[1,3]上f(x)>=0,求常数a,b使∫1~3 f(x)dx最小
问题描述:
设f(x)=ax+b-lnx,在[1,3]上f(x)>=0,求常数a,b使∫1~3 f(x)dx最小
答
f(x)=ax+b-lnx, 依题意f(1)=a+b>=0, f(3)=3a+b-ln3>=0, g(a,b)=∫f(x)dx=[(1/2)ax^+bx-xlnx+x]| =4a+2b-3ln3+3, 当a+b=0,3a+b=ln3,即a=(1/2)ln3,b=(-1/2)ln3时 g(a,b)取最小值3-2ln3....