【对边和相等的四边形一定有内切圆】,这句话正确吗?如果正确,请写出证明过程.

问题描述:

【对边和相等的四边形一定有内切圆】,这句话正确吗?如果正确,请写出证明过程.

正确.证明如下:
充分性.
设四边形ABCD,AB+CD=BC+AD,
∵OA平分〈A,OB平分〈B,
∵△OEA≌△OFA,AF=AE,同理BF=BG,AE+BG=AF+BF=AB,
∵而已知AD+BC=AB+CD,
AE+ED+BG+CG=AF+BF+CD,
∴ED+CG=CD,
同理,∵△O'E'D≌△O'HD,
∴DE'=DH,
∵△O'EG'C≌△O'HC,
∴CG'=CH,
∴CG'+DE'=DH+CH=CD,
而DE+CG=CD,
∴CG'+DE'=DE+CG,
G与G',E与E'重合,
因过一点只能作一条垂线,
故O与O'也重合,
O点距四边距离相等,
是内切圆圆心,
∴对边和相等的四边形一定有内切圆.
若反过来,必要性,
E、F、G、H是切点,
则AE=AF,BF=BG,CG=CH,DH=DE,
∴AB+CD=AD+BC.