求f(x)=2^sinx +2^cosx的最值

问题描述:

求f(x)=2^sinx +2^cosx的最值

f'(x)=2^sinxln2*cosx-2^cosxln2*sinx令f'(x)=0,得:2^sinx/sinx=2^cosx/cosx (sinxcosx≠0)令g(x)=2^x/x(x∈(-1,0)∪(0,1)),则g'(x)=(2^xln2*x-2^x)/x^2=2^x/x^2*(xln2-1)