等差数列{an}中d=-2 a1=1 sn=-8 求n

问题描述:

等差数列{an}中d=-2 a1=1 sn=-8 求n

sn=(a1+a1+(n-1)d)n/2=-8=(2-2(n-1))n/2=(2-n)n,n=4

sn=n-n(n-1)=2n-n^2=-8,
n^2-2n-8=0,n>0,
∴n=4.

sn=[2a1+(n-1)d]*n/2
-8=[2*1+(n-1)*(-2)]n/2
-16=[2+(n-1)*(-2)]n
-16=[2+2-2n]n
-16=(4-2n)n
-16=4n-2n^2
-8=2n-n^2
-8=2n-n^2
n^2-2n-8=0
(n-4)(n+2)=0
n=4或n=-2
所以n=4