用数学归纳法证明证明x^2n-y^2n能被x+y整除
问题描述:
用数学归纳法证明证明
x^2n-y^2n能被x+y整除
答
n=1时
x^2n-y^2n=x^2-y^2=(x+y)(x-y)
能被X+Y整除
设n≤k时,x^2n-y^2n,能被X+Y整除
n=k+1时
x^2n-y^2n=x^(2k+2)-y^(2k+2)
=(x^2k-y^2k)(x^2+y^2)-x^2ky^2+x^2y^2k
=(x^2k-y^2k)(x^2+y^2)-x^2y^2(x^(2k-2)-y^(2k-2))
因为n≤k时,x^2n-y^2n,能被X+Y整除
所以,(x^2k-y^2k)和(x^(2k-2)-y^(2k-2))都能被X+Y整除
所以,
^2n-y^2n=(x^2k-y^2k)(x^2+y^2)-x^2y^2(x^(2k-2)-y^(2k-2))
能被X+Y整除
答
1.当n=1时原式=x^2-y^2=(x-y)(x+y)能被x+y整除故命题成立2.假设n=k时命题成立,即 x^(2k)-y^(2k)能被x+y整除当n=k+1时x^(2k+2)-y^(2k+2)=x·x^(2k+1)-y·y^(2k+1)=(x+y)[x^(2k+1)-y^(2k+1)]-y·x^(2k+1)+x·y^(2k+1)=...