将(n+1)(an+1^2)-nan^2+(an+1*an)=0化简得(n+1)an+1=nan怎么化简的啊
问题描述:
将(n+1)(an+1^2)-nan^2+(an+1*an)=0化简得(n+1)an+1=nan怎么化简的啊
答
我大概知道你表达的啥意思了…………
(n+1)*a(n+1)^2-n*an^2+a(n+1)*an=0
n*a(n+1)^2-n*an^2+a(n+1)^2+a(n+1)*an=0
n*(a(n+1)-an)*(a(n+1)+an)+a(n+1)*(a(n+1)+an)=0
(a(n+1)+an)*(n*a(n+1)+a(n+1)-n*an)=0
(n+1)*a(n+1)=n*an