设数列an是首项为1的正项数列,且(n+1)a²n+1-na²n+an+1an=0(n=1,2,3.)求次数列的通项公式说的是先化简an与an+1的关系,为什么整理出来是[(n+1)an+1-nan](an+1+an)=0就是问上面一部是怎么得出来的

问题描述:

设数列an是首项为1的正项数列,且(n+1)a²n+1-na²n+an+1an=0(n=1,2,3.)
求次数列的通项公式
说的是先化简an与an+1的关系,为什么整理出来是[(n+1)an+1-nan](an+1+an)=0
就是问上面一部是怎么得出来的

n[a(n+1)]²+[a(n+1)]²-n(an)²+a(n+1)an=0n{[a(n+1)]²-(an)²}+[a(n+1)]²+a(n+1)an=0n[a(n+1)+an][a(n+1)-an]+a(n+1)[a(n+1)+an]=0[a(n+1)+an]{n[a(n+1)-an]+a(n+1)}=0[a(n+1)+an][na(n+1)-nan+a(n+1)]=0

(n+1)a²n+1-na²n+an+1an=0
(n+1)*a(n+1)^2-n*an^2+an*a(n+1)=0
n*(a(n+1)^2-an^2)+a(n+1)^2+an*a(n+1)=0
(a(n+1)+an)((n+1)*a(n+1)-n*an)=0
又{an}为正项数列,(n+1)*a(n+1)-n*an=0
(n+1)*a(n+1)=n*an
1*a1=1
an=1/n

n[a(n+1)]²+[a(n+1)]²-n(an)²+a(n+1)an=0n{[a(n+1)]²-(an)²}+[a(n+1)]²+a(n+1)an=0n[a(n+1)+an][a(n+1)-an]+a(n+1)[a(n+1)+an]=0[a(n+1)+an]{n[a(n+1)-an]+a(n+1)}=0[a(n+1)+an][na(n...