设a=根号2,b=根号7-根号3,c=根号6-根号2,则abc的大小顺序是

问题描述:

设a=根号2,b=根号7-根号3,c=根号6-根号2,则abc的大小顺序是

a=4/(2√2)
b=4/(√7+√3)
c=4/(√6+√2)
∵√7+√3>√6+√2
∴b又∵(2√2)²=8
(√6+√2)²=8+4√3
∴2√2∴a>c
∴b

a=√2=2/√2=4/(2√2)=4/(√2+√2),
b=√7-√3=(√7-√3)( √7+√3)/( √7+√3)=4/( √7+√3),
c=√6-√2=(√6-√2)( √6+√2)/( √6+√2)=4/( √6+√2),
因为√2+√24/( √7+√3)
即a>c>b.