在△ABC中,a=0.15,C=103.4°,B=75.85°,求c的长,
问题描述:
在△ABC中,a=0.15,C=103.4°,B=75.85°,求c的长,
答
C=103.4°,B=75.85°
所以
A=180-103.4°-75.85°=0.75°
正弦定理得
a/sinA=c/sinC
c=0.15*sin103.4°/sin0.75°
答
A=180-103.4°-75.85°=0.75°
正弦定理得
a/sinA=b/sinB=c/sinC
c=0.15*sin103.4°/sin0.75° (正弦值自己找个计算器算)