数学选修2-2导数问题
问题描述:
数学选修2-2导数问题
1.设I1为曲线Y1=sinx在点(0,0)处的切线,I2为曲线Y2=cosx在点(π/2,0)处的切线,则I1与I2的夹角为?
2.在曲线y=sinx(0<x<π)上取一点M,使过M电的切线与直线y=(√3)x/2 ,则M点的坐标为?
3.已知发f(x)=sin2x/(1+cos2x),则导数为?
4.求过点(2,0)且与曲线y=1/x相切的直线方程.
答
1.(1)求I1的表达式:对Y1=sinx 求导得到 cosx 并通过点(0,0)可求得切线斜率为k=1,求的I1的表达式为y=x;(2)求I2的表达式:对Y2=cosx求导得到 -sinx 并通过点(π/2,0)可求得切线斜率为k=-1,求的I2的表达式为y=-x+...