设u=z/√(x^2+y^2 ),求全微分du(3,4,5)
问题描述:
设u=z/√(x^2+y^2 ),求全微分du(3,4,5)
答
偏u/偏x=-xz/(x^2+y^2)^3/2=-3/25
偏u/偏y=-yz/(x^2+y^2)^3/2=-4/25
偏u/偏z=1/(x^2+y^2)^1/2=1/5
则du=偏u/偏x*dx+偏u/偏y*dy+偏u/偏z*dz
所以du(3,4,5)=-3/25dx-4/25dy+1/5dz