如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连接EF. (1)求证:∠CEF=∠BAH; (2)若BC=2CE=6,求BF的长.
问题描述:
如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连接EF.
(1)求证:∠CEF=∠BAH;
(2)若BC=2CE=6,求BF的长.
答
(1)证明:∵CD切⊙O于E,∴∠FEC=∠EBC.∵ABCD为矩形,∴∠ABC=90°,∴∠ABE+∠EBC=90°.∵AH⊥BE,∴∠BAH=∠EBC,∴∠FEC=∠BAH.(2)∵EC切⊙O于E,∴EC2=CF•BC.∵BC=2CE=6,∴32=CF•6,∴CF=32.∴BF=B...