已知等差数列{an}的首项为2,公差为2,(1)求{an}的前n项和Sn;(2)求{1/Sn}的前n项和Tn

问题描述:

已知等差数列{an}的首项为2,公差为2,(1)求{an}的前n项和Sn;(2)求{1/Sn}的前n项和Tn

(1)由等差数列的前n项和公式Sn=n(a1)+n(n-1)d/2得:Sn=2n+n(n-1)=n^2+n=n(n+1);(2)由(1)知1/Sn=1/[n(n+1)]=1/n-1/(n+1)故Tn=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+[1/n-1/(n+1)]=1-1/(n+1)=n/(n+1)注意:上述求和方法...