某商场销售一种冰箱,每台进价2500元.市场调查研究表明,当售价为2900元时,平均每天能售出8台;当售价每降50元时,平均每天就能多售出4台;商场要使这种冰箱的销售利润平均每天达到5000元,每台售价应降低多少元?
问题描述:
某商场销售一种冰箱,每台进价2500元.市场调查研究表明,当售价为2900元时,平均每天能售出8台;当售价每降50元时,平均每天就能多售出4台;商场要使这种冰箱的销售利润平均每天达到5000元,每台售价应降低多少元?
答
设每台冰箱的定价应为x元,依题意得(x-2500)(8+
×4)=50002900−x 50
解方程得x1=x2=2750
经检验x1=x2=2750符合题意.
答:每台冰箱的定价应为2750元.
答案解析:销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每台的盈利×销售的件数=5000元,即可列方程求解.
考试点:一元二次方程的应用.
知识点:本题考查了一元二次方程的应用.解题的关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.