某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
问题描述:
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
答
(1)60≤x≤60(1+40%),∴60≤x≤84,由题得:40=80k+b50=70k+b解之得:k=-1,b=120,∴一次函数的解析式为y=-x+120(60≤x≤84).(2)销售额:xy=x(-x+120)元;成本:60y=60(-x+120).∴W=xy-60y,=x(-...
答案解析:(1)根据题意得:销售单价x≥成本60元,获利不得高于40%时,销售单价=60(1+40%),获利不得高于40%,则销售单价x≤60(1+40%);再利用待定系数法把x=80时,y=40;x=70时,y=50.代入一次函数y=kx+b中,求出k,b即可得到关系式;
(2)根据题目意思,表示出销售额和成本,然后表示出利润=销售额-成本,整理后根据x的取值范围求出最大利润.
考试点:二次函数的应用.
知识点:此题主要考查了待定系数法求一次函数解析式,一次函数在实际问题中的应用,做题时一定要弄清题意,理清关系,综合性较强,体现了数学与实际生活的密切联系.