数列{an}是首项为2,公差为1的等差数列,其前n项和为Sn,求数列an的通项公式an及前n项和Sn

问题描述:

数列{an}是首项为2,公差为1的等差数列,其前n项和为Sn,求数列an的通项公式an及前n项和Sn

an=n+1
sn=n(n+3)再除以2

an=n+1 sn=(n2(平方)+3n)/ 2

an=a1+(n-1)d
=2+(n-1)*1=n+1
Sn=a1n+n(n-1)*d/2
=2n+n(n-1)/2=2n+n^2/2-n/2=(n^2+3n)/2