根号21减去根号22与根号22减去根号23,比较大小.

问题描述:

根号21减去根号22与根号22减去根号23,比较大小.

(根号21-根号22)-(根号22-根号23)
=根号21+根号23-2根号22
(根号21+根号23)^2=44+2根号483
(2根号22)^2=88
44+2根号483-88=2根号483-44
因为483所以2根号483-44所以根号21+根号23所以(根号21-根号22)-(根号22-根号23)所以(根号21-根号22)

不是太明白,
如果你说的比较大小,很简单啊,开方不就行了。
你能说明白点吗?

√21-√22=(√21-√22)/1上下同时乘以(√21+√22)(√21-√22)(√21+√22)/1(√21+√21)=-1/(√21+√21)√22-√23=(√22-√23)/1上下同时乘以(√22+√23)(√22-√23)(√22+√23)/1(√22+√23)=...

这样比
【(√21-√22) / (√22-√23)】
都乘以 (√21+√22),(√22+√23)这两个式子
等于 (√22+√23) / (√21+√22)看这个式子是否大于1
答案是肯定大于1
√22=√22 √23>√21
所以√22+√23》√21+√22
所以 √21-√22>√22-√23