已知数列﹛㏒₂﹙An-1﹚﹜(n∈正整数)为等差数列,且a1=3,a3=9,(1)、求数列{An}的通项公式(2)、证明1/(a2-a1)+1/(a3-a2)+……+1/(a( n+1) - an)<1

问题描述:

已知数列﹛㏒₂﹙An-1﹚﹜(n∈正整数)为等差数列,且a1=3,a3=9,
(1)、求数列{An}的通项公式
(2)、证明1/(a2-a1)+1/(a3-a2)+……+1/(a( n+1) - an)<1

(1)、数列{An}的通项公式An=1+2^n,
(2)、证明1/(a2-a1)+1/(a3-a2)+……+1/(a( n+1) - an)<1,1/(a( n+1) - an)=1/2^n,∴1/2+1/4+1/8+1/16+……+1/2^n=1-1/2^n<1.

a1=3,a3=9 a1-1=2 a3-1=8
设bn=﹛㏒₂﹙An-1﹚﹜
b1=1, b3=3 2d=3-1 d=1
bn=1+n-1=n ==﹛㏒₂﹙An-1﹚﹜
An=2^n+1
2.an+1-an=2^n
1/(a2-a1)+1/(a3-a2)+……+1/(a( n+1) - an)
=1/2+1/4+1/8+.+1/2^n
=1-1/[2^(n+1)]