计算a+[a+b]+[a+2b]+[a+3b]+...+[a+99b]
问题描述:
计算a+[a+b]+[a+2b]+[a+3b]+...+[a+99b]
答
a+[a+b]+[a+2b]+[a+3b]+...+[a+99b]
=a*100+ b * (1 +2 +3 + ……+ 99)
=100a+ b*(1+99)*99/2
=100a+ 4950b
答
a+[a+b]+[a+2b]+[a+3b]+...+[a+99b]
=100a+(1+2+3+……+99)b
=100a+4950b
答
=a+[a+b]+[a+2b]+[a+3b]+...+[a+99b]
=100a+b+2b+3b+...+99b
=100a+(1+2+3+..+99)*b
=100a+99*(1+99)/2 *b
=100a+4950b