设a>0 b>0且a+b=1/2 B 1/a+1/b>=1 C √ab>=2 D 1/(a^2+b^2)

问题描述:

设a>0 b>0且a+b=1/2 B 1/a+1/b>=1 C √ab>=2 D 1/(a^2+b^2)

D

选B;
由均值不等式得
a b>=2√(a*b),所以(a*b)