同底数幂的乘法已知:x(x-1)-(x^2-y)=1,求1/3(x-y)^3·(y-x)^2+5(x-y)[-(x-y)^4]的值.(最好说明理由,)
问题描述:
同底数幂的乘法
已知:x(x-1)-(x^2-y)=1,求1/3(x-y)^3·(y-x)^2+5(x-y)[-(x-y)^4]的值.
(最好说明理由,)
答
x(x-1)-(x^2-y)=1
x^2-x-x^2+y=1
-x+y=1
x-y=-1
所以 1/3(x-y)^3·(y-x)^2+5(x-y)[-(x-y)^4]
=1/3(x-y)^3*(x-y)^2-5(x-y)(x-y)^4
=1/3(x-y)^5-5(x-y)^5
=-14/3(x-y)^5
=-14/3*(-1)^5
=14/3
答
x=14/3
答
x(x-1)-(x^2-y)=1
x^2-x-x^2+y=1
y-x=1
x-y=-1
1/3(x-y)^3·(y-x)^2+5(x-y)[-(x-y)^4]
=1/3(-1)^3*1^2+5*(-1)*[-(-1)^4]
=-1/3+5
=14/3