如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
问题描述:
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
答
(1)证明:∵AD为直径,AD⊥BC,
∴由垂径定理得:
=BD
CD
∴根据圆心角、弧、弦之间的关系得:BD=CD.
(2) B,E,C三点在以D为圆心,以DB为半径的圆上.
理由:由(1)知:
=BD
,CD
∴∠1=∠2,
又∵∠2=∠3,
∴∠1=∠3,
∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,
∵BE是∠ABC的平分线,
∴∠4=∠5,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)
答案解析:(1)利用等弧对等弦即可证明.
(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.
考试点:确定圆的条件;圆心角、弧、弦的关系.
知识点:本题主要考查等弧对等弦,及确定一个圆的条件.