已知sinx+cosx=1/3,求sin^3x+cos^3x

问题描述:

已知sinx+cosx=1/3,求sin^3x+cos^3x

得2sinxcosx=-24/25, (sinx-cosx)^2=48/25 得sinx-cosx=-4√3/5, 故sin^3x-cos^3x =(sinx-cosx)(1+sinxcosx)=-52√3/125

sin^3x+cos^3x=
sinx+cosx(sin^2x+cos^2x-sinxcosx)=
1/3(1-sinxcosx)
又因为sinx+cosx=1/3
(sinx+cosx)^2=1/9
得sinxcosx=-4/9
所以1/3(1-sinxcosx)
=13/27

由 (sinx+cosx)^3 = (sinx)^3+(cosx)^3 + 3sinxcosx(sinx+cosx)得 (sinx)^3+(cosx)^3 = (sinx+cosx)^3 - 3sinxcosx(sinx+cosx)= (1/3)^3-3*(1/3)sinxcosx= 1/27-sinxcosx (1)又由 sinx+cosx=1/3 得 (sinx+cosx)^2=(1...