已知函数f(x)=根号3sinwx×coswx-cos^2wx(w>0)最小正周期为π/2(1)求w的值及已知函数f(x)=根号3sinwx×coswx-cos^2wx(w>0)最小正周期为π/2(1)求w的值及函数f(x)的解析式(2)若△ABC的三条边a,b,c满足a^2=bc,a边所对的角为A,求A的取值范围cos^2wx 是 coswx 的平方

问题描述:

已知函数f(x)=根号3sinwx×coswx-cos^2wx(w>0)最小正周期为π/2(1)求w的值及
已知函数f(x)=根号3sinwx×coswx-cos^2wx(w>0)最小正周期为π/2(
1)求w的值及函数f(x)的解析式
(2)若△ABC的三条边a,b,c满足a^2=bc,a边所对的角为A,求A的取值范围
cos^2wx 是 coswx 的平方

f(x) = √3*sinwx*coswx-cos^2wx
=√3/2*sin2wx-1/2*cos2wx-1/2
=sin(2wx-π/6)-1/2
∵周期为二分之派
∴2π/2w=π/2
∴w=2
f(x) =sin(4x-π/6)-1/2
∴单调增区间:-π/2+2kπ≤4x-π/6≤π/2+2kπ
∴单调增区间:-π/12+kπ/2≤x≤π/6+kπ/2
` 单调减区间:π/6+kπ/2≤x≤(5/12)π+kπ/2

1.已知函数f(x)=根号3sinwx×coswx-cos^2wx(w>0)=√3/2sin2wx-1/2cos2wx-1/2=sin(2wx-π/6)-1/2最小正周期为π/2 最小正周期为2π/2w=π/2 w=2f(x)==sin(4x-π/6)-1/22.若△ABC的三条边a,b,c满足a^2=bc余弦定理cos...