在ABC中,内角A,B,C的对边分别为a,b,c,已知cosA−2cosCcosB=2c−ab(Ⅰ)求sinCsinA的值;(Ⅱ)若cosB=14,b=2,求△ABC的面积S.
问题描述:
在ABC中,内角A,B,C的对边分别为a,b,c,已知
=cosA−2cosC cosB
2c−a b
(Ⅰ)求
的值;sinC sinA
(Ⅱ)若cosB=
,b=2,求△ABC的面积S. 1 4
答
(Ⅰ)由正弦定理设
=a sinA
=b sinB
=kc sinC
则
=2c−a b
=2ksinC−ksinA ksinB
=2sinC−sinA sinB
cosA−2cosC cosB
整理求得sin(A+B)=2sin(B+C)
又A+B+C=π
∴sinC=2sinA,即
=2sinC sinA
(Ⅱ)由余弦定理可知cosB=
=
a2+c2−b2
2ac
①1 4
由(Ⅰ)可知
=sinC sinA
=2②c a
①②联立求得c=2,a=1
sinB=
=
1−
1 16
15
4
∴S=
acsinB=1 2
15
4
答案解析:(Ⅰ)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA的关系式,则
的值可得.sinC sinA
(Ⅱ)先通过余弦定理可求得a和c的关系式,同时利用(Ⅰ)中的结论和正弦定理求得a和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.
考试点:解三角形;三角函数中的恒等变换应用.
知识点:本题主要考查了解三角形和三角函数中恒等变换的应用.考查了学生基本分析问题的能力和基本的运算能力.