已知xy/(x+y)=a,xz/(x+z)=b,yz/(y+z)=c,且a.b.c不等于0,求x的值

问题描述:

已知xy/(x+y)=a,xz/(x+z)=b,yz/(y+z)=c,且a.b.c不等于0,求x的值

三个方程分别两边取倒数得
1/x + 1/y=1/a①
1/x + 1/z=1/b②
1/y + 1/z=1/c③
这三个式子相加得
2(1/x + 1/y +1/z)=1/a + 1/b + 1/c
则1/x + 1/y +1/z=1/2(1/a + 1/b + 1/c)④
④-③得1/x=1/2(1/a + 1/b - 1/c)
则x=2/(1/a + 1/b - 1/c)

a≠0,xy≠0 x≠0且y≠0;同理,b≠0,x≠0,z≠0综上,得x,y,z≠0xy/(x+y)=a(x+y)/(xy)=1/a1/x+1/y=1/a (1)同理1/x+1/z=1/b (2)1/y+1/z=1/c (3)[(1)+(2)+(3)]/21/x+1/y+1/z=(1/a+1/b+1/c)/2 (4)(4)-(3)1/x=(1/a+1/b+1/c)...