已知2x/x2-4=A/x+2+B/x-2,求A,B的值
问题描述:
已知2x/x2-4=A/x+2+B/x-2,求A,B的值
答
A = 0, B=0.
2 x/(x^2 - 4 )== A/x + 2 + B/(x - 2) 通分
答
右边通分得
A/x+2+B/x-2
=[A(x-2)+B(x+2)]/(x+2)(x-2)
=[(A+B)x+(2B-2A)]/(x+2)(x-2)
=2x/(x+2)(x-2)
所以(A+B)x+(2B-2A)=2x
所以
A+B=2
2B-2A=0
解得
A=1,B=1
答
右边通分=[A(x-2)+B(x+2)]/(x+2)(x-2)
=[(A+B)x+(2B-2A)]/(x+2)(x-2)
=2x/(x+2)(x-2)
所以(A+B)x+(2B-2A)=2x
所以
A+B=2
2B-2A=0
所以
A=1,B=1