若a为锐角,sina -cosa =1/2,则sin(a)^3-cos(a)^3的值等于_____若a为锐角,sina -cosa =1/2,则sin(a)^3-cos(a)^3的值等于_____11/16why?

问题描述:

若a为锐角,sina -cosa =1/2,则sin(a)^3-cos(a)^3的值等于_____
若a为锐角,sina -cosa =1/2,则sin(a)^3-cos(a)^3的值等于_____
11/16
why?

原式=(sin(A)-sin(b))*(1+sin(A)*sin(b))
(sin(a)-sin(b))^2=1/4
sin(a)*sin(b)=3/8
即0.5*(1+3/8)

(sina-cosa)^2=(sina)^2+(cosa)^2-2sinacosa
所以2sinacosa=1-(1/4)=3/4
原式=(sina-cosa)[(sina)^2+(cosa)^2+sina*cosa]
=(sina-cosa)[1+(3/8)]
=(1/2)*(11/8)=11/16