如果一元二次方程(m-3)x^2-x+m^2-10=0有一个根是-1,求m的值及方程的另一个根.

问题描述:

如果一元二次方程(m-3)x^2-x+m^2-10=0有一个根是-1,求m的值及方程的另一个根.
RT,急

方程为一元二次方程,二次项系数m-3≠0
m≠3
x=-1代入
(m-3)(-1)²-(-1)+m² -10=0
整理,得
m²+m -12=0
(m-3)(m+4)=0
m=3(舍去)或m=-4
方程变为-7x² -x+6=0
7x² +x-6=0
设另一根为x,由韦达定理得
(-1) ×x=(-6)/7=-6/7
x=6/7
另一根是6/7.
m的值是-4,另一根是6/7.