(1/1*4)+(1/4*7)+(1/7*10+)+(1/10*13)+……(1/97*100)的结果是什么?(1/1*4)=四乘一 分之 一

问题描述:

(1/1*4)+(1/4*7)+(1/7*10+)+(1/10*13)+……(1/97*100)的结果是什么?(1/1*4)=四乘一 分之 一

(1/1*4)+(1/4*7)+(1/7*10+)+(1/10*13)+……(1/97*100)
=1/3*[(1-1/4)+(1/4-1/7)+(1/7-1/10+)+(1/10-1/13)+……(1/97-1/100)]
=1/3*(1-1/100)
=33/100

1/[(n+3)*n]=(1/3)(1/n-1/n+3)
由此式
原式=...(中间项全消去)=(1/3)*1-(1/3)*(1/100)=33/100

1/1*4=1/3(1-1/4)
1/4*7=1/3(1/4-1/7)
…………
1/97*100=1/3(1/97-1/100)
(1/1*4)+(1/4*7)+(1/7*10+)+(1/10*13)+……(1/97*100)
=1/3(1-1/4)+1/3(1/4-1/7)+……+1/3(1/97-1/100)
=1/3*[1-1/4+1/4-1/7+……+1/97-1/100]
=1/3*[1-1/100]
=33/100

=1/3*(1-1/4)+1/3*(1/4-1/7)+……+1/3*(1/97-1/100)
=1/3*(1-1/4+1/4-1/7+……+1/97-1/100)
=1/3/(1-1/100)
=33/100