1/1*3+1/2*4+1/3*5+1/4*6+1/5*7+1/6*8------1/17*19+1/18*20
问题描述:
1/1*3+1/2*4+1/3*5+1/4*6+1/5*7+1/6*8------1/17*19+1/18*20
答
1/n(n+2)=1/2【1/n-1/(n+2)】然后你自己在带进去算,就会发现都可以消掉
做这种类型的题目你就得要先尝试着不用简便方法,先算,找出规律,然后一般都是前减后再乘一个几分之几,一般是1/2,希望对你有帮助
答
1/1*3+1/2*4+1/3*5+1/4*6+1/5*7+1/6*8
=3+2+5/3+3/2+7/5+4/3
=5+50/30+45/30+42/30+40/30
=109/10 = 10+(9/10)
1/17*19+1/18*20
=19/17+10/9
=171/153+170/153
=341/153
答
1/1*3+1/2*4+1/3*5+1/4*6+1/5*7+1/6*8------1/17*19+1/18*20=1/2(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+%1/17-1/19+1/18-1/20)=1/2×(1-1/19+1/2-1/20)=1/2×(18/19+9/20)=1/2×531/380=531/760