lim=in(sinx)/(π-2x)^2 x趋近π/2

问题描述:

lim=in(sinx)/(π-2x)^2 x趋近π/2

用罗比达法则
lim=in(sinx)/(π-2x)^2
=lim {cosx/sinx}/{2(π-2x)}
=(1/2)lim cosx/(π-2x)
=(1/2)lim [-sinx/(-2)]
=1/4还是不对 答案是-1/8lim=in(sinx)/(π-2x)^2 =lim {cosx/sinx}/{-4(π-2x)}=(-1/4)lim cosx/(π-2x)=(-1/4)lim [-sinx/(-2)]=-1/8