求x^2(cosx)^2sinx积分

问题描述:

求x^2(cosx)^2sinx积分

∫x^2(cosx)^2sinx dx= (-1/3) ∫x^2 d(cosx)^3= -(1/3) x^2 (cosx)^3 +(1/3) ∫2x(cosx)^3 dx= -(1/3) x^2 (cosx)^3 +(1/3) ∫2x(1-(sinx)^2 ) dsinx= -(1/3) x^2 (cosx)^3 +(2/3) ∫x dsinx - (2/9)∫ xd(sinx)^3 ...