证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx

问题描述:

证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx

把5siny=sin(2x+y)变为5sin[(x+y)-x]=sin[(x+y)+x],把其中的(x+y),看成一个整体,上式即变为4sin(x+y)cosx=6cos(x+y)sinx,再把式子的左右两边变换为sin(x+y)/cos(x+y)=3/2sinx/cosx,即tan(x+y)=3/2 tanx

[sin(2x+y)/sinx]-2cos(x+y)={[sin(x+y)cosx+cos(x+y)sinx]/sinx}-2cos(x+y)={[sin(x+y)cosx+cos(x+y)sinx-2cos(x+y)sinx]/sinx=[sin(x+y)cosx-cos(x+y)sinx]/sinx=sin(x+y-x)/sinx=siny/sinx