三角函数难题
三角函数难题
3.已知函数f(x)=4cosxsin(x+[π/6])-1
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.
4.已知函数f(x)=cos^2ωx+√3sinωxcosωx(ω>0)的最小正周期为π.
(1)求f(2/3π)的值;
(2)求函数f(x)的单调区间及其图像的对称轴方程
3.
(1)
f(x)=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=2√3sinxcosx+2cos²x-1
=√3sin2x+cos2x
=2(sin2x*√3/2+cos2x*1/2)
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6)
∴f(x)的最小正周期:T=2π/2=π ,
(2)∵-π/6≤x≤π/4 ∴-π/6≤2x+π/6≤2π/3
∴2x+ π/6=π/2时,f(x)取得最大值 2
2x+ π/6=-π/6时,f(x)取得 最小值-1
4.
(1)f(x)=1/2(1+cos2ωx)+√3/2*sin2ωx
=1/2+√3/2*sin2ωx+1/2*cos2ωx
=1/2+sin(2ωx+π/6)
∵ f(x)的最小正周期为π,
∴T=2π/2ω=π,解得ω=1
∴ f(x)=sin(2x+π/6)+1/2
∴f(2π/3)=sin(4π/3+π/6)+1/2
=sin(3π/2)+1/2=1/2
(2)
由2kπ-π/2≤2x+π/6≤2kπ+π/2(k∈Z),
得:kπ-π/3≤x≤kπ+π/6,(k∈Z)
∴函数f(x)的单调增区间为
[kπ-π/3,kπ+π/6](k∈Z)
由 2kπ+π/2≤2x+π/6≤2kπ+3π/2(k∈Z),
得:kπ+π/6≤x≤kπ+2π/3(k∈Z)
函数f(x)的单调减区间为
[kπ+π/6,kπ+2π/3](k∈Z)
由2x+π/6=kπ+π/2(k∈Z)
得x=kπ/2+π/6(k∈Z)
∴f(x)图象的对称轴方程为
x=kπ/2+π/6(k∈Z)