如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,则CE=_.

问题描述:

如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,则CE=______.

如图,由切割线定理,得
CD2=CB•CA,(2分)
CD2=CB(AB+CB),
CB2+2CB-4=0,
解得CB=

5
-1(负数舍去)
连接OD,则OD⊥CD,又EB与⊙O相切,
∴EB⊥OC,
∴Rt△ODC∽Rt△EBC,(6分)
于是
CE
OC
=
BC
CD
,即
CE
5
=
5
-1
2

∴CE=
5-
5
2

故填:
5-
5
2